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INTRODUCTION

1. HISTORY AND SIGNIFICANCE OF THE PROBLEM

Evolution inclusions emerge from various problems, in-
cluding control problems with multivalued feedbacks, differential
equations with discontinuous right-hand side, and differential vari-
ational inequalities. The study of asymptotic behavior of solutions
to evolution inclusions in this thesis consists of the (weak) stabil-
ity for stationary points, the existence of global attractor for the
associated dynamical system, and some classes of special solutions
such as anti-periodic and decay solutions.

Evolution inclusions in finite dimensional spaces have been
studied early. The solvability and structure of solution set were
presented systematically in the monograph of Deimling (1992).
Subsequently, evolution inclusions in Banach spaces and their ap-
plications became an important subject for researchers in the last
decades. We refer the reader to monographs of Tolstonogov (2000)
and Kamenskii et al. (2001).

One of the most important questions in the study of differential
equations is the stability of solutions. For ordinary differential
equations, the classical Lyapunov theory has been an effective tool
to address the stability of their solutions. In order to attack the
stability of solutions to partial differential equations, the theory
of global attractors was introduced.

The Lyapunov theory and the framework for studying global
attractors have been developed to deal with the stability of so-
lutions to evolution inclusions. Since the uniqueness for Cauchy
problem associated with evolution inclusions is unavailable, the
classical Lyapunov theory does not work for studying the stabil-
ity of solutions. As far as the evolution inclusions in finite di-
mensional spaces are concerned, the concept of weak stability was
introduced by Filippov (1988). Regarding the evolution inclusions
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in infinite dimensional spaces, the most frequently used technique
was attractor theory.

In recent decades, attractor theory has been well-developed
and systematic results have been achieved (see the monographs of
Raugel (2002) and Babin (2006). Regarding the behavior of mul-
tivalued dynamical systems associated to differential equations
without uniqueness or differential inclusions, some famous the-
ories such as the theory of m−semiflows established by Melnik
and Valero (1998), and the theory of generalized semiflows given
by Ball (1997) have been used. A comparison of these two theo-
ries was given by Carabalo (2003). In the sequel, the concepts of
pullback attractor and uniform attractor were also introduced to
deal with non-autonomous evolution inclusions (see Carabalo et
al. (1998; 2003), Melnik and Valero (2000)). Especially, in the last
two years, some remarkable improvements for the theory of global
attractors were made by Kalita et al.. The latest results on global
attractors focus on relaxing the continuity conditions and giv-
ing criteria for asymptotic compactness of semigroups/processes
based on the measure of noncompactness. However, applying these
criteria to functional differential systems is difficult due to the
complication of associated phase spaces.

Thanks to the framework of Melnik and Valero, in this thesis,
we study the existence of a compact global attractor for the m-
semiflow generated by the problem

u′(t) ∈ Au(t) + F (u(t), ut), t ≥ 0, (1)

u(s) = φ(s), s ∈ [−h, 0], (2)

where u is the state function with values in X , ut stands for the
history of the state function up to time t, i.e. ut(s) = u(t + s)

for s ∈ [−h, 0], F is a multivalued map defined on a subset of
X × C([−h, 0];X). In this model, A : D(A) ⊂ X → X is a linear
operator satisfying the Hille–Yosida condition but D(A) ̸= X.
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For the fractional differential/inclusions equations, since the
semigroup property does not hold in their solution set, the theory
of global attractors is useless in studying the asymptotic behavior
of solutions. Moreover, the classical concept of Lyapunov stabil-
ity theory cannot be applied to multi-valued cases. Therefore, we
adopt the concept of weakly asymptotic stability of zero solution
when studying the class of fractional inclusions:

Dα
0 u(t) ∈ Au(t) + F (t, u(t), ut), t > 0, t ̸= tk, k ∈ Λ, (3)

∆u(tk) = Ik(u(tk)), (4)

u(s) + g(u)(s) = φ(s), s ∈ [−h, 0], (5)

where Dα
0 , α ∈ (0, 1), is the fractional derivative in the Caputo

sense, A is a closed linear operator in X which generates a strong
continuous semigroup W (·), F : R+ ×X ×C([−h, 0];X) → P(X)

is a multivalued map, ∆u(tk) = u(t+k )−u(t−k ), k ∈ Λ ⊂ N, Ik and
g are the continuous functions. Here ut stands for the history of
the state function up to the time t.

The system (3)-(5) is a generalized Cauchy problem which in-
volves impulsive effect and nonlocal condition expressed by (4)
and (5), respectively. In the case α = 1, the problem with non-
local and impulsive conditions has been studied extensively. It is
known that nonlocal conditions give a better description for real
models than classical initial ones, e.g., the condition

u(s) +
M∑
i=1

ciu(τi, s) = φ(s)

allows taking some measurements in addition to solely initial one.
On the other hand, impulsive conditions have been used to de-
scribe the dynamical systems with abrupt changes. There have
been extensive studies devoted to particular cases of this problem
in literature. We refer to some typical results on the existence
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and properties of solution set presented by A. Cernea (2012),
R.N. Wang et al. (2014, 2015), M. Feckan et al. (2015), in which
the solvability on compact intervals and the structure of solu-
tion set like Rδ-set were proved. Regarding related control prob-
lems, it should be mentioned the results on controllability given by
J.R.Wang and Y. Zhou (2011), R. Sakthivel, R. Ganesh and S.M.
Anthoni (2013), R.N.Wang, Q.M. Xiang and P.X. Zhu (2014). One
of the most important questions in the problem (3)-(5) is to an-
alyze the stability of its solutions. Unfortunately, the results on
this direction are less known.

Together with stability theory, finding special classes such as
anti-periodic solutions of differential system also attracts many
researchers. The existence of anti-periodic solutions to nonlin-
ear evolution equations has been investigated by many authors
in the last decades since the work of H. Okochi (1988) (see also H.
Okochi (1990)). Without stressing to widen the list of references,
we quote here some remarkable results of A. Haraux (1989), Y.
Wang (2010), Z.H. Liu (2010). Recently, Q. Liu (2012) has dealt
with the existence of the anti-periodic mild solutions to the semi-
linear abstract differential equation in the form

u′(t) +Au(t) = f(t, u(t)), t ∈ R,
u(t+ T ) = −u(t), t ∈ R,

where R stands for the set of real numbers and A is the generator
of a hyperbolic C0−semigroup. Since this work, the existence of
anti-periodic solutions to differential equations in Banach spaces
by using semigroup theory has been established by many authors,
for example, we refer readers to the results of D. O’Regan et al.
(2012), R. N. Wang and D. H. Chen (2013), V. Valmorin (2012),
J.H. Liu et al. (2014, 2015).

All the results about the solution of anti-periodic problem are,
however, in the equation form and most of them need Lipschitz
condition for the nonlinear part in right hand side. Therefore, in
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this thesis, we study the existence of anti-periodic solutions to a
class of polytope differential inclusions

u′(t) ∈ Au(t) + F (t, u(t)), t ∈ R, (6)

u(t+ T ) = −u(t), t ∈ R, (7)

where F (t, u(t)) = conv{f1(t, u(t)), · · · , fn(t, u(t))}; A is a Hille-
Yosida operator having the domain D(A) such that D(A) ̸= X

and the part of A in D(A) generates a hyperbolic semigroup.

Because of these, we select the above subjects for the main con-
tent of the thesis: "Asymptotic behavior of solution to evolution
inclusions in infinite dimensional space".

2. PURPOSES, OBJECTS AND SCOPE OF THE THESIS

The thesis focuses on studying the solvability and asymptotic
behavior of some classes of differential inclusions in infinite di-
mensional spaces. More precisely as follows.

• Content 1: The existence of global attractors for multival-
ued dynamics generated by semilinear functional evolution
inclusions.

• Content 2: The existence of anti-periodic solutions to semi-
linear evolution inclusions.

• Content 3: The weak stability of stationary solutions to
semilinear evolution inclusions.

3. METHOD OF THE THESIS

• To study the solvability, we employ the semigroup method,
MNC estimate method and fixed points theory.

• To prove the existence of global attractors for multivalued
dynamics generated by semilinear functional evolution in-
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clusions, we employ the frameworks of Melnik and Valero
(1998).

• To analyze the weak stability of stationary solutions to semi-
linear evolution inclusions, we make use of the fixed point
techniques.

4. RESULTS AND TRUCTURE OF THESIS

Together with the Introdution, Inclusion, Author’s works re-
lated to the thesis that have been published and References, the
thesis includes four chapters:

• Chapter 1: Preliminaries. This chapter presents the basic
notions and known results of the general theory of semi-
group, measure of noncompactness, condensing maps, frac-
tional calculus and global attractor of m−semiflows.

• Chapter 2: Global attractor for a class of functional differ-
ential inclusions. This chapter devotes to prove the global
solvability and the existence of a compact global attractor
for the m-semiflow generated by a class of functional differ-
ential inclusions with Hille–Yosida operators.

• Chapter 3: Existence of anti-periodic solutions for a class
of polytope differential inclusions. In this chapter, we prove
the existence of anti-periodic solutions for a class of polytope
differential inclusions assuming that its linear part is a non-
densely defined Hille-Yosida operator.

• Chapter 4: Weak stability for a class of semilinear fractional
differential inclusions. In this chapter, we prove the global
solvability and weak asymptotic stability for a semilinear
fractional differential inclusion subject to impulsive effects
and nonlocal condition.
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Chapter 1

PRELIMINARIES

This chapter presents some preliminaries including: some func-
tional spaces; semigroup theory; measure of noncompactness; fixed
points theorem for multivalued maps; global attractor of m−semiflows
and fractional calculus.

1.1. Some functional spaces

In this section, we recall some functional spaces and functional
spaces depending on time which will be used in our thesis.

1.2. Semigroup

In this section, we present the basic knowledge about semi-
group theory and some common semigroup, especially the insight
into integrated semigroup.

1.3. Measure of noncompactness (MNC) and MNC estimate

In this section, we recall some notions and facts related to
measure of noncompactness (MNC) and Hausdorff MNC, followed
by some MNC estimate which is necessary for the next chapters.

1.4. Condensing map and fixed points theorem for multivalued

maps

In this section, we recall some notions of set-valued analysis
and condensing map, then introduce some fixed point theorem for
multivalued maps.

1.5. Global attractor of m−semiflows

In this section, we present theory of global attractor of m−semiflows
of Melnik and Valero (1998) and the framework to prove the ex-
istence of a compact global attractor for m−semiflows generated
by a differential inclusions.
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1.6. Fractional calculus

In this section, we recall some notions and facts related to
fractional calculus, fractional resolvent operators.
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Chapter 2

GLOBAL ATTRACTOR FOR A CLASS OF
FUNCTIONAL DIFFERENTIAL INCLUSIONS

We study the dynamics for a class of functional differential
inclusions whose linear part generates an integrated semigroup.
Some techniques of measure of noncompactness are deployed to
prove the global solvability and the existence of a compact global
attractor for the m-semiflow generated by our system. The ob-
tained results generalize recent ones in the same direction.

The content of this chapter is written based on the paper [2] in
the author’s works related to the thesis that has been published.

2.1. Setting problem

Let (X, ∥ · ∥) be a Banach space, we consider the following
problem

u′(t) ∈ Au(t) + F (u(t), ut), t ≥ 0, (2.1)

u(s) = φ(s), s ∈ [−h, 0], (2.2)

where ut stands for the history of the state function up to time t,
i.e. ut(s) = u(t+s) for s ∈ [−h, 0], F is a multivalued map defined
on a subset of X×C([−h, 0], X). In this model, A : D(A) ⊂ X →
X is a linear operator satisfying the Hille-Yosida condition.

2.2. Existence of integral solution

Denote

Pc(X) = {D ∈ P(X) : D is closed},

Ch = {φ ∈ C([−h, 0];X) : φ(0) ∈ D(A)},

Cφ = {v : J → D(A), v ∈ C(J,X), v(0) = φ(0)}.
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For v ∈ Cφ, we denote v[φ] ∈ C([−h, T ], X) as follows

v[φ](t) =

{
v(t) if t ∈ [0, T ]

φ(t) if t ∈ [−h, 0].

In what follows, we use the assumption that

(A) The operator A satisfies the Hille-Yosida condition and the
C0-semigroup {S′(t)}t≥0 is norm-continuous.

(F) The multi-valued function F : D(A)×Ch → Pc(X) satisfies:

(1) F is u.s.c with weakly compact and convex values;

(2) ∥F (x, y)∥ := sup{∥ξ∥ : ξ ∈ F (x, y)} ≤ a∥x∥+ b∥y∥Ch
+

c, for all x ∈ D(A), y ∈ Ch, where a, b, c ≥ 0;

(3) if {S′(t)} is noncompact, then χ(F (B,C)) ≤ pχ(B) +

q sup
t∈[−h,0]

χ(C(t)), for all B ⊂ D(A), C ⊂ Ch, where

p, q ∈ R+.

Putting PF (v) = {f ∈ L1(J ;X) : f(t) ∈ F (v(t), v[φ]t), a.e. t ∈
J}, we have the definition of integral solution to our problem.

Definition 2.1. For a given φ ∈ Ch, a continuous function u :

[−h, T ] → X is said to be an integral solution to problem (2.1)-
(2.2) on [−h, T ] with initial datum φ if ∃f ∈ PF (u) such that

u(t) =

S′(t)φ(0) + lim
λ→+∞

∫ t

0
S′(t− s)λ(λI −A)−1f(s)ds, t ≥ 0,

φ(t), t ∈ [−h, 0].

Theorem 2.1. Let the hypotheses (A) and (F) hold. Then prob-
lem (2.1)-(2.2) has at least one integral solution for each initial
datum φ ∈ Ch.
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2.3. Existence of global attractor

The m-semiflow governed by (2.1)-(2.2) is defined as follows

G : R+ × Ch → P(Ch),
G(t, φ) = {ut : u[φ] is an integral solution of (2.1) − (2.2)}.

In this section, we need an additional assumption as following.

(S) ∃α, β > 0, N ≥ 1 such that

∥S′(t)∥L(X) ≤ e−αt, ∥S′(t)∥χ ≤ Ne−βt,∀t > 0.

Theorem 2.2. Let the hypotheses (A), (F) and (S) hold. Then
the m-semiflow G generated by system (2.1)-(2.2) admits a com-
pact global attractor provided that

min{α− (a+ b), β − 4N(p+ q)} > 0.

2.4. Application

2.4.1. Partial differential inclusion in bounded domain

Let Ω be a bounded open set in Rn with smooth boundary ∂Ω

and O ⊂ Ω be an open subset. Consider the following problem (I)

∂u

∂t
(t, x)−∆xu(t, x) + λu(t, x) = f(x, u(t, x)) +

m∑
i=1

bi(x)vi(t), x ∈ Ω, t > 0,

vi(t) ∈
[∫

O
k1,i(y)u(t− h, y)dy,

∫
O
k2,i(y)u(t− h, y)dy

]
, 1 ≤ i ≤ m,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

u(s, x) = φ(s, x), x ∈ Ω, s ∈ [−h, 0],

where λ > 0, f : Ω × R → R is a continuous function satisfies
|f(x, r)| ≤ a(x)|r| + b(x), ∀x ∈ Ω, r ∈ R, bi ∈ C(Ω), kj,i ∈ L1(O)

for i ∈ {1, ...,m}, j = 1, 2, and φ ∈ Ch = C([−h, 0];C(Ω)). Let

X = C(Ω), X0 = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω},
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are endowed with the sup norm ∥v∥ = supx∈Ω |v(x)|. So follow-
ing Theorem 2.2, the m-semiflow generated by (I) has a compact
global attractor in C([−h, 0];C(Ω)) if

∥a∥+
m∑
i=1

∥bi∥max{
∫
O
|k1,i(y)|dy;

∫
O
|k2,i(y)|dy} < λ.

2.4.2. Partial differential inclusion in unbounded domain

We consider the following problem (II) with Ω = Rn and O is
a bounded domain in Rn

∂u

∂t
(t, x)−∆xu(t, x) + λu(t, x) = f(x, u(t, x)) +

m∑
i=1

bi(x)vi(t), x ∈ Rn, t > 0,

vi(t) ∈
[∫

O
k1,i(y)u(t− h, y)dy,

∫
O
k2,i(y)u(t− h, y)dy

]
, 1 ≤ i ≤ m,

u(s, x) = φ(s, x), x ∈ Rn, s ∈ [−h, 0].

In this model, we assume that

1) bi ∈ L2(Rn), kj,i ∈ L2(O), j = 1, 2; 1 ≤ i ≤ m and φ ∈
C([−h, 0];L2(Rn));

2) f : Rn × R → R such that f(·, z) is measurable for each
z ∈ R and there exists κ ∈ L2(Rn) verifying

|f(x, z1)− f(x, z2)| ≤ κ(x)|z1 − z2|, ∀x ∈ Rn, z1, z2 ∈ R.

Let X = L2(Ω), we have A = ∆ − λI generates a analytic semi-
group T (·), which T (·) is exponentially stable and χ-decreasing
with exponent λ. We have the following result due to Theorem
2.2.

Theorem 2.3. The m-semiflow generated by (II) admits a com-
pact global attractor in C([−h, 0];L2(Rn)) provided that

max{4∥κ∥, ∥κ∥+
m∑
i=1

∥bi∥max{∥k1,i∥L2(O), ∥k2,i∥L2(O)} < λ.
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Chapter 3

EXISTENCE OF ANTI-PERIODIC SOLUTIONS FOR A
CLASS OF POLYTOPE DIFFERENTIAL INCLUSIONS

In this section, we prove the existence of anti-periodic solu-
tions for a class of polytope differential inclusions in Banach space
assuming that its linear part is a non-densely defined Hille-Yosida
operator.

The content of this chapter is written based on the paper [1] in
the author’s works related to the thesis that has been published.

3.1. Setting problem

Let (X, ∥ · ∥) be a Banach space. In this chapter, we are con-
cerned with the existence of the solution for the following problem

u′(t) ∈ Au(t) + F (t, u(t)), t ∈ R, (3.1)

u(t+ T ) = −u(t), t ∈ R (3.2)

where F (t, u(t)) = conv{f1(t, u(t)), . . . , fn(t, u(t))}; A is a Hille-
Yosida operator having the domain D(A) such that D(A) ̸= X

and the part of A in D(A) generates a hyperbolic semigroup.

3.2. Existence of anti-periodic mild solution

Denote PTA(R;X) = {u ∈ BC(R;X) : u(t + T ) = −u(t)}, it
is easy to see that PTA(R;X), equipped with the sup normed, is
a Banach space. We assume that:

(A) The operator A satisfies the Hille-Yosida condition. In ad-
dition, {S′(t)}t≥0 is hyperbolic.

(F) The function fi : R×D(A) → X, i = 1, · · · , n satisfies:

13



(1) fi(·, x) is strongly measurable for every x ∈ D(A) and
fi(t, ·) is continuous for a.e. t ∈ R;

(2) ∥fi(t, x)∥ ≤ m(t)(∥x∥ + 1), for all x ∈ D(A), where
m ∈ L1

loc(R;R+);

(3) if S′(·) is noncompact, then χ(fi(t, B)) ≤ k(t)χ(B), for
all B ⊂ D(A), where k ∈ L1

loc(R;R+),

(4) fi(t+ T,−x) = −fi(t, x) for all x ∈ D(A).

Definition 3.1. A mild solution to equation (2.1)-(2.2) is a func-
tion u ∈ BC(R;X) satisfying the integral equation

u(t) = S′(t− s)u(s) + lim
λ→+∞

∫ t

s

S′(t− s)Rλf(s)ds,

where Rλ = λ(λI −A)−1, for all t > s and s ∈ R, f ∈ PTA
F (u).

Theorem 3.1. Let the hypotheses (A) and (F) hold. Then prob-
lem (2.1)-(2.2) has at least one integral solution provided that

2N

1− e−δT

∫ T

0

m(s)ds < 1. (3.3)

3.3. Applications

3.3.1. Example 1

Let Ω be a bounded open set in Rn with smooth boundary ∂Ω.
Consider the following problem

∂u

∂t
(t, x)−∆xu(t, x) + λu(t, x) = f(t, x, u(t, x)), x ∈ Ω, t ∈ R,

(3.4)

f(t, x) ∈ [f1(t, x, u(t, x))); f2(t, x, u(t, x))], x ∈ Ω, t ∈ R,
(3.5)

u(t+ T ) = −u(t), x ∈ Ω, t ∈ R, (3.6)

u(t, x) = 0, t ∈ R, x ∈ ∂Ω, (3.7)
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where λ > 0. Let

X = C(Ω), X0 = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω}.

Let fi : R× C0(Ω) → C(Ω), for i = 1, 2, as follows

fi(t, v)(x) = f̃i(t, x, v(x)),

where f̃i : R× Ω× R → R satisfies:

(H1) f̃i(·, x, z) is measurable for every x ∈ Ω; f̃i(t, ·, z) is continu-
ous for each t, z ∈ R, and f̃i(t, x, ·) is continuous for all t ∈ R
and x ∈ Ω;

(H2) |f̃i(t, x, z)| ≤ m(t)(|z| + 1), for all t, z ∈ R, x ∈ Ω, where
m ∈ L1

loc(R;R+);

(H3) f̃i(t+ T, x,−z) = −f̃i(t, x, z), for all t, z ∈ R, x ∈ Ω.

Following Theorem 3.1, problem (3.4)-(3.7) have T−anti-periodic
solutions provided that

2

1− e−λT

∫ T

0

m(s)ds < 1.

3.3.2. Example 2

We consider the following problem

∂tu(t, x) =
M∑

k,l=1

∂k(akl(x)∂l)u(t, x) + a0(x)u(t, x) + f(t, x, u(t, x)),

x ∈ Ω, t ∈ R, (3.8)

f(t, x) ∈ [f1(t, x, u(t, x))); f2(t, x, u(t, x))], x ∈ Ω, t ∈ R,
(3.9)

u(t+ T ) = −u(t), x ∈ Ω, t ∈ R. (3.10)
M∑

k,l=1

nk(x)akl(x)∂lu(t, x) = 0, t ∈ R, x ∈ ∂Ω. (3.11)
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Here Ω ⊆ RM is a bounded domain with boundary ∂Ω of class
C2 and n(x) is the outer unit normal vector. We assume that:

akl ∈ C1(Ω), k, l = 1, · · · ,M, a0 ∈ C(Ω),

where
n∑

k,l=1

akl(x)vkvl ≥ η|v|2, for a constant η > 0, x ∈ Ω, v ∈ Rn.

On X = Lp(Ω), 1 < p < ∞, we consider the operator

A(x,D) :=
M∑

k,l=1

∂k(akl(x)∂l) + a0(x)

with domain

D(A) :=
{
f ∈

∩
p>1

W 2,p(Ω) :

A(·, D)f ∈ C(Ω),
M∑

k,l=1

nk(·)akl(·)∂lf = 0 on ∂Ω
}
.

By Schnaubelt (2001), A generates a hyperbolic semigroup T (·)
on X with the constants M,λ > 0.
Let fi : R× Lp(Ω) → Lp(Ω), for i = 1, 2, as follows

fi(t, v)(x) = f̃i(t, x, v(x)),

where f̃i : R× Ω× R → R satisfies:

(H4) f̃i(·, ·, z) is measurable for each t, z ∈ R; f̃i(t, x, ·) is contin-
uous for a.e. t ∈ R and x ∈ Ω;

(H5) |f̃i(t, x, z)| ≤ m̃(t)(|z| + 1), for all t, z ∈ R, x ∈ Ω, where
m̃ ∈ L1

loc(R;R+);

(H6) |f̃i(t, x, z)− f̃i(t, x, z
′)| ≤ k(t)|z−z′|, where k ∈ L1

loc(R;R+),

(H7) f̃i(t+ T, x,−z) = −f̃i(t, x, z), for all t, z ∈ R, x ∈ Ω.

We have the following result due to Theorem 3.1.
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Theorem 3.2. Problem (3.8)-(3.11) have T−anti-periodic solu-
tion provided that

2M

1− e−λT

∫ T

0

m̃(s)ds < 1.
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Chapter 4

WEAK STABILITY FOR A CLASS OF FRACTIONAL
DIFFERENTIAL INCLUSIONS

We propose a unified approach to prove the global solvability
and weakly asymptotic stability for a semilinear fractional differ-
ential inclusion subject to impulsive effects and nonlocal condi-
tion.
The content of this chapter is written based on the papers [1]
and [3] in the author’s works related to the thesis that has been
published.

4.1. Setting problem

Let (X, ∥·∥) be a Banach space. Consider the following problem
CDα

0 u(t) ∈ Au(t) + F (t, u(t), ut), t > 0, t ̸= tk, k ∈ Λ, (4.1)

∆u(tk) = Ik(u(tk)), (4.2)

u(s) + g(u)(s) = φ(s), s ∈ [−h, 0], (4.3)

where Dα
0 , α ∈ (0, 1), is the fractional derivative in the Caputo

sense, A is a closed linear operator in X which generates a strongly
continuous semigroup W (·), F is a multivalued map, ∆u(tk) =

u(t+k )− u(t−k ), k ∈ Λ ⊂ N, infk∈Λ(tk+1 − tk) > 0, Ik and g are the
continuous functions. Here ut stands for the history of the state
function up to the time t.
Let Σ(φ) be the solution set of (4.1)-(4.3) with respect to the
initial datum φ such that 0 ∈ Σ(0). The zero solution of (4.1)-
(4.3) is said to be weakly asymptotically stable if it is

1) stable: for every ϵ > 0, there exists δ > 0 such that if ∥φ∥h <

δ then ∥ut∥h < ϵ for any u ∈ Σ(φ), here ∥ · ∥h denotes the
norm in C([−h, 0];X);

2) weakly attractive: for any φ ∈ B, there exists u ∈ Σ(φ)

satisfying ∥ut∥h → 0 as t → +∞.
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4.2. Functional space and measure of noncompactness

We denote by E = PC(J ;X) the space of piecewise continuous
functions defined on J ⊂ R and take values in X. If J = [−h,+∞),
we consider the following space

PCϱ([−h,+∞);X) = {u ∈ PC([−h,+∞);X) : lim
t→+∞

u(t)

ϱ(t)
= 0},

where ϱ : R+ → [1,+∞) is a continuous and nondecreasing func-
tion. We have PCϱ([−h,+∞);X) with the norm

∥u∥ϱ = sup
t∈[−h,0]

∥u(t)∥+ sup
t≥0

∥u(t)∥
ϱ(t)

,

is a Banach space. We will define a new regular MNC in this space
as follows

χ∗(D) = sup
T>0

χPC(πT (D)) + lim
T→+∞

sup
u∈D

sup
t≥T

∥u(t)∥
ϱ(t)

, (4.4)

where πT (u) is the restriction of u to [−h, T ], and D ⊂ PCϱ.

4.3. Existence of solutions on the half line

We assume that:

(A) The C0-semigroup {W (t)}t≥0 generated by A is norm-continuous
and ∥W (t)x∥ ≤ MA∥x∥,∀t ≥ 0, x ∈ X.

(F) The nonlinearity F : R+×X×C([−h, 0];X) → X satisfies:

1) F (·, v, w) is u.s.c for each t ∈ R+;

2) the multi-valued map t 7→ F (t, u(t), ut) admits a strongly
measurable selection for each u ∈ PCϱ;

3) there exist functions m ∈ Lp
loc(R+) such that

∥F (t, v, w)∥ = sup{∥ξ∥ : ξ ∈ F (t, v, w)} ≤ m(t)(∥v∥+∥w∥h),

for all (t, v, w) ∈ R+ ×X ×C([−h, 0];X), here ∥ · ∥h is
the norm in C([−h, 0];X);
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4) if W (·) is noncompact, there exists a function k ∈
Lp
loc(R+) such that

χ(F (t, V,W )) ≤ k(t)

[
χ(V ) + sup

t∈[−h,0]

χ(W (t))

]
,

for a.e. t ∈ R+, and ∀V ∈ B(X),W ∈ B(C([−h, 0];X)).

(G) The function g : PCϱ → C([−h, 0];X) is continuous and
satisfies

1) ∥g(u)∥h ≤ Ψg(∥u∥ϱ) for all u ∈ PCϱ, where Ψg is a
function on R+;

2) ∃η ≥ 0 such that χh(g(D)) ≤ η · χ∞(D) for all D ∈
B(PCϱ), where χh is the Hausdorff MNC in C([−h, 0];X).

( I) The function Ik : X → X, k ∈ Λ, is continuous and satisfies:

1) there exists a nonnegative sequence {lk}k∈Λ such that∑
k∈Λ lk < ∞ and

∥Ik(x)∥ ≤ lk ∥x∥, for all x ∈ X, k ∈ Λ,

2) there exists a nonnegative sequence {µk}k∈Λ such that

χ(Ik(B)) ≤ µkχ(B), ∀B ∈ B(X).

For u ∈ PCϱ we denote

Pp
F (u) = {f ∈ Lp

loc(R
+;X) : f(t) ∈ F (t, u(t), ut) for a.e. t ∈ R+}.

Definition 4.1. A function u : [−h,+∞) → X is said to be
an integral solution of problem (4.1)-(4.3) if and only if u(t) +

g(u)(t) = φ(t) for t ∈ [−h, 0], and ∃f ∈ Pp
F (u) such that for any

t > 0

u(t) = Sα(t)[φ(0)− g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk))

+

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds.
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We have following theorem.

Theorem 4.1. For σ ∈ (0, 1), assume that

(1 +MA) lim inf
r→+∞

Ψg(r)

r
+MA

∑
k∈Λ

lk

+ 2 sup
t>0

∫ t

0

(t− s)α−1∥Pα(t− s)∥m(s)

ϱ(t− s)
ds < 1,

ℓ = ηMA +MA

∑
k∈Λ

µk + 8 sup
t≥0

∫ t

0

(t− s)α−1∥Pα(t− s)∥χk(s)ds < 1,

ϑ = sup
t>0

∫ σt

0

∥Pα(t− s)∥
ϱ(t− s)

m(s)ds < ∞,

κ = sup
t>0

∫ t

σt

(t− s)α−1∥Pα(t− s)∥
ϱ(t− s)

m(s)ds <
1

2
.

Then problem (4.1)-(4.3) has at least one integral solution in PCϱ.

4.4. Weak stability result

We replace (A), (F) and (G) by stronger ones:

(A*) The semigroup W (·) is norm-continuous and there exists
β > 0 such that

∥W (t)x∥ ≤ MAe
−βt∥x∥, ∀t ≥ 0, x ∈ X.

(F*) The function F satisfies (F) with m ∈ L1(R+) ∩ Lp
loc(R+).

(G*) The nonlocal function g satisfies (G) with Ψg(r) = ν·r,∀r ≥
0, here ν is a positive constant.

Theorem 4.2. Let (A*), (F*), (G*) and (I) hold. Then the zero
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solution of (4.1)-(4.3) is weakly asymptotically stable provided that

ℓ = ηMA +MA

∑
k∈Λ

µk + 8 sup
t≥0

∫ t

0

(t− s)α−1∥Pα(t− s)∥χk(s)ds < 1,

ϖ = (1 +MA)ν +MA

∑
k∈Λ

lk + 2 sup
t>0

∫ t

0

(t− s)α−1∥Pα(t− s)∥m(s)ds < 1.

4.5. Application

We consider the following lattice differential system

dα

dtα
ui(t) = (Au(t))i + fi(t), t > 0, t ̸= tk, k ∈ N, (4.5)

fi(t) ∈ [f1i(t, ui(t), ui(t− ρ(t))), f2i(t, ui(t), ui(t− ρ(t)))],

(4.6)

∆ui(tk) = Iik(ui(tk)), (4.7)

ui(s) +
N∑
j=1

cjui(τj + s) = φi(s), s ∈ [−h, 0], τj > 0, (4.8)

where u = (ui) : [−h,+∞) → ℓ2 is the unknown function,
dα

dtα
is

the Caputo derivative of order α ∈ (0, 1), A : ℓ2 → ℓ2 is defined as
follows (Av)i = vi+1 − (2 + λ)vi + vi−1, v ∈ ℓ2, ρ : R+ → [0, h] is
a continuous function, λ > 0. We give the following assumptions

(N1) f1i, f2i : R+ × R2 → R, i ∈ Z, are continuous and satisfy

max{|f1i(t, y, z)|2, |f2i(t, y, z)|2} ≤ m2(t)(|y|2 + |z|2),

for all (t, η, z) ∈ R+ × R2, where m ∈ C(R+;R+) satisfies

m(t) ≤ Cm

1 + tα+1
for some Cm > 0.

(N2) Iik : R → R, i ∈ Z, k ∈ N, are continuous such that

|Iik(y)| ≤ lk|y|,

where lk > 0, ∀k ∈ N such that
∑

k∈N lk < ∞.
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If the hypotheses (N1) and (N2) hold, we get the weakly asymp-
totic stability of zero solution to (4.5)-(4.8).

4.6. Special case

We consider a special case of the problem (4.1)-(4.3), when F

is a singleton function, denoted by f .

CDα
0 u(t) = Au(t) + f(t, u(t), us), t ̸= tk, tk > 0, k ∈ Λ, (4.9)

∆u(tk) = Ik(u(tk)), (4.10)

u(s) + g(u)(s) = φ(s), s ∈ [−h, 0]. (4.11)

We assume that:

(Aa) W (·) is norm continuous and ∃β > 0 such that

∥W (t)x∥ ≤ MAe
−βt∥x∥, ∀t ≥ 0, x ∈ X.

(Fa) f(·, v, w) is measurable for each v ∈ X, f(t, ·, ·) is continu-
ous for a.e. t ∈ R+, f(t, 0, 0) = 0, and ∃k ∈ Lp(R+), p > 1

α ,

such that: for all v1, v2 ∈ X,w1, w2 ∈ Ch

||f(t, v1, w1)−f(t, v2, w2)|| ≤ k(t)(||v1−v2||−||w1−w2||Ch
), t ∈ R+.

(Ga) g is continuous, g(0) = 0 and ∃η > 0 such that

||g(w1)− g(w2)||h ≤ η||w1 − w2||∞, ∀w1, w2 ∈ PC0.

( Ia ) Ik, k ∈ Λ, is continuous, Ik(0) = 0 and ∃{µk}k∈Λ such that

||Ik(x)− Ik(y)|| ≤ µk||x− y||, for all x, y ∈ X.

Since Banach contraction principle, we have following theorem.

Theorem 4.3. Let (Aa), (Fa), (Ga), (Ia) hold. Then problem
(4.9)-(4.11) has a unique solution ∥u(t)∥ = o(1), provided that(

η +
∑
k∈Λ

µk

)
MA + 2 sup

t≥0

∫ t

0

(t− s)α−1∥Pα(t− s)∥k(s)ds < 1.
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CONCLUSION

1. RESULTS

This thesis has studied the asymptotic behavior of solu-
tions to some classes of evolution inclusions in Banach space. The
results are:

1) For the class of differential inclusions with finite delay whose
linear part generates an integrated semigroup: We have proved
the global solvability and the existence of a compact global
attractor for the m−semiflow generated by our system.

2) For a class of polytope differential inclusions with Hille–Yosida
operator: We have proved the existence of anti-periodic so-
lutions.

3) For a semilinear fractional differential inclusion subject to
impulsive effects and nonlocal condition: We have proved the
global solvability and weakly asymptotic stability of zero
solution. In a special case, the nonlinearity F is singleton
and satisfies the Lipschitz condition, we have proved the
existence and uniqueness of decay solution.

2. RECOMMENDATION

Some open problems are

• Study the asymptotic behavior of solutions (using theory of
global/pullback attractor or stability theory) to some classes
of differential inclusions with delay variation or infinite de-
lay.

• Study the existence of some classes of special solutions such
as periodic, anti-periodic and decay solutions to some other
classes of evolution inclusions.

24



AUTHOR’S WORKS RELATED TO THE THESIS
THAT HAVE BEEN PUBLISHED

1) T.D. Ke, D. Lan, Decay integral solutions for a class of Im-
pulsive Fractional differential equations in Banach spaces,
Fractional Calculus and Applied Analysis, Volume 17, Num-
ber 1 (2014) 96-121.

2) T.D. Ke, D. Lan, Global attractor for a class of functional
differential inclusions with Hille–Yosida operators, Nonlin-
ear Analysis: Theory, Methods and Applications, Volume
103 (2014) 72–86.

3) T.D. Ke, D. Lan, Generalized Cauchy problem governed by
fractional differential inclusions on the half line, submitted .

4) T.D. Ke, D. Lan, Existence of Anti-periodic solutions for
a class of polytope differential inclusions with Hille-Yosida
operators, submitted .

Results of the thesis have been reported at:

1) 8th National Mathematics Congress, Nha Trang, 08/2013;

2) Seminar of Department of Analysis, Falcuty of Mathematics,
Hanoi National University of Eduacation;

3) Seminar of Department of Differential Equations, Institute
of Mathematics, VAST.

4) Seminar of Department of Optimization and Control The-
ory, Institute of Mathematics, VAST.

5) Seminar on Asymptotic Behavior of Solutions to Differential
Equations and Applications, School of Applied Mathematics
and Informatics, Hanoi University of Science and Technol-
ogy.


